A Coq Formalization of Finitely Presented Modules

نویسندگان

  • Cyril Cohen
  • Anders Mörtberg
چکیده

This paper presents a formalization of constructive module theory in the intuitionistic type theory of Coq. We build an abstraction layer on top of matrix encodings, in order to represent finitely presented modules, and obtain clean definitions with short proofs justifying that it forms an abelian category. The goal is to use it as a first step to get certified programs for computing topological invariants, like homology groups and Betti numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Exact Sequence and Finitely Presented Modules

The notion of quasi-exact sequence of modules was introduced by B. Davvaz and coauthors in 1999 as a generalization of the notion of exact sequence. In this paper we investigate further this notion. In particular, some interesting results concerning this concept and torsion functor are given.

متن کامل

Formalized linear algebra over Elementary Divisor Rings in Coq

This paper presents a Coq formalization of linear algebra over elementary divisor rings, that is, rings where every matrix is equivalent to a matrix in Smith normal form. The main results are the formalization that these rings support essential operations of linear algebra, the classification theorem of finitely presented modules over such rings and the uniqueness of the Smith normal form up to...

متن کامل

Formalizing Refinements and Constructive Algebra in Type Theory

The extensive use of computers in mathematics and engineering has led to an increased demand for reliability in the implementation of algorithms in computer algebra systems. One way to increase the reliability is to formally verify that the implementations satisfy the mathematical theorems stating their specification. By implementing and specifying algorithms from computer algebra inside a proo...

متن کامل

MULTIPLICATION MODULES THAT ARE FINITELY GENERATED

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. An $R$-module $M$ is called a multiplication module if for every submodule $N$ of $M$ there exists an ideal $I$ of $R$ such that $N = IM$. It is shown that over a Noetherian domain $R$ with dim$(R)leq 1$, multiplication modules are precisely cyclic or isomorphic to an invertible ideal of $R$. Moreover, we give a charac...

متن کامل

A characterization of finitely generated multiplication modules

 Let $R$ be a commutative ring with identity and $M$ be a finitely generated unital $R$-module. In this paper, first we give necessary and sufficient conditions that a finitely generated module to be a multiplication module. Moreover, we investigate some conditions which imply that the module $M$ is the direct sum of some cyclic modules and free modules. Then some properties of Fitting ideals o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014